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Rydberg transitions 
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A model consisting of a proton which is harmonically bound along a line and 
an electron bound to the proton is treated. Spectral features of the model 
system considered include energy level shifts, vibronic intensities, and interac- 
tions between members of degenerate manifolds not predicted by the applica- 
tion of the Born-Oppenheimer approximation to the model system. A time 
dependent process resulting in vibrationally induced preionization is also 
investigated. The results have special physical relevance in that they serve to 
facilitate understanding of vibrational effects on molecular Rydberg spectra. 

Keywords: Vibrational effects upon Rydberg spectra--Perturbation theory 
approach for a model system. 

1. Introduction 

The harmonic oscillator and the hydrogen atom eigenvalue problems were among 
the first successfully treated by quantum mechanics. In this research, a system is 
studied which has features of both. The system consists of an electron associated 
with a proton which is itself harmonically bound. 

The applicability of the Born-Oppenheimer approximation to molecules relies 
upon the frequencies of molecular vibrations being much less than the frequencies 
of electronic transitions. However, for any particular vibrational manifold in a 
molecule, there exists a spectral region in which the vibrational frequency is 
nearly identical to a particular electronic frequency. In such a spectral region, 
the Born-Oppenheimer approximation is no longer appropritate. In fact, as one 
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moves through this degenerate region into the spectral region in which the 
vibrational frequency is greater than the electronic frequency, one might think 
of applying what could be called the anti-Born-Oppenheimer approximation in 
order to obtain agreement between calculated and observed features [1]. In this 
last spectral regime time-dependent effects such as vibrationally induced pre- 
ionization may occur. For the calculations in this paper, neither the Born-  
Oppenheimer approximation nor its opposite is featured; rather a particular 
perturbative approach is used which favors neither regime and which is exact 
order by order. 

2. Model system 

The model system (Fig. 1) consists of a proton constrained to motion along a 
line where it is subject to a Hooke's law potential and an electron attracted to 
the proton by a coulombic potential (three-dimensional). The equilibrium position 
of the proton is the origin of an imposed coordinate frame. This model yields a 
Rydberg-type spectrum with associated vibrational features. 

The Hamiltonian operator, in atomic units (a.u.) is 

1 a 2 +�89 
H = -�89 0, ~b) 2m 082 

where p, 0, and ~b are spherical polar coordinates for the position of the electron 
with respect to the origin; ~7 is the distance between the electron and the proton; 
6 is the displacement of the proton from its equilibrium position as measured 
along the Z axis; m and K are the rest mass and force constant of the oscillator, 
respectively. 

/ 
6 

Fig. 1. Model system 
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3. Basic  theory 

In order to obtain the spectrum of the model system through the use of Rayleigh- 
Schr6dinger perturbation theory, the quantity 1/~7 is expressed as a function of 
p, 0, and ~b. This leads to two series, each of which is valid over a unique region 
depending upon the relation between p and 6. 

S=oO S 

series fx: 1 = 1  ~ 7_~77~ Ps(cO s 0); p < 6  
n g6 s=o 0*6) 

series re: 1 1 s ~  (/~6)' --=- ~. ---7-P~(cosO);p>& 
~/ p s=0 p 

Mu (p,) in a dimensionless parameter which keeps track of the power of 6 
throughout the perturbation calculations. Using the Heaviside function 0(p  - 6) 
and defining 

O 1 = 1 - |  6) 

the Hamiltonian operator may be formally expressed as 

1 0 2 klK~21_l_A[Ol(f2_fl)+l f2] 
H =-�89 0, ~) 2m 082 p 

= H ~  (1) 

Here, h is another dimensionless parameter which is used to keep track of the 
order of the perturbation in the same sense as the usual developmental parameter. 
As it turns out, more than one power of h may be needed to get all terms 
corresponding to a single power of ~. The point of view which emerges is that 
organizing the results according to powers of /z  makes the most sense. 

The Hamiltonian operator (1) is now seen to be composed of a part which is 
simple and a part which is small. The simple part is a sum of the well-characterized 
hydrogenic and harmonic oscillator Hamiltonians (each referred to a common 
origin), while the small part consists of a mixture of terms which will be called 
the perturbation. Notice that the term 1/p in the perturbation is restricted to a 
comparatively small domain (p < 6). 

For the unperturbed part of (1) we have independent systems. The zero-order 
wave functions are a product of the hydrogenic and harmonic oscillator eigenfunc- 
tions. They are functions of p, O, ~, and 6. The higher order wave functions and 
energies follow the standard Rayleigh-Schr6dinger perturbation theory formula- 
tions in which the hydrogenic continuum eigenfunctions [2] have been included. 

4. Static case calculation 

In order to explore the methodlogy of using first order perturbation theory as 
involving both the bound and continuum state wave functions of the hydrogen 
atom and the two developmental parameters, the following test problem is 
treated [33. 
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Consider a proton located on the Z axis a distance 3 from the origin of a set of 
coordinate axes. Let  there be an electron attracted to the proton by a coulombic 
potential (this is our model without the inclusion of the proton dynamics). The 
electric moment of this system in the ground electronic state ([n, l, m] = [1, 0, 0]) 
will be calculated with respect to the origin of the coordinate axes. Since the 
electron charge density in the ground state would be spherically symmetric about 
the proton, the electric moment of the system should be zero with respect to the 
origin. 

The Hamiltonian operator  for this static system is: 

Hs =-lV2(p' O' 4))-l+ A { Ol(fz- fl) + (1 -  f2) } 

~(o) .t,(o) r The zero-order  wave functions are ~v,,l,m (p, 0, ~b) and ~,k,t,m ~p, 0, ~b). These are 
the bound and continuum state hydrogenic wavefunctions, respectively. 

For the model, the electric moment operator  is: 

Psystem = ~z3k-[p cos 0 cos $i+p sin 0 sin r cos Ok]. 
We wish to calculate the average value of the electric moment for the system. 
Because 3 is constant, the proton's contribution to (Psy,tem) is/z6. The electron's 
contribution to (Psyst,m) correct through the first order in /z results from con- 
sideration of the first order (h) electronic function, ~l,0,0(P, 0, ~b). In particular, 

(Pelectron) = f XI2"I*.0,0(P, 0, ~)PelectronXI~l,0,o(p, 0, ~b). 
d d  r 

To the first order in /~, the only non-zero terms in this expression result from 
the Z component of Pelectron" Evaluation of this quantity leads to [4]: 

2" ~ nS {n- l~ 2~ 
(P,,~ct~on)Z = -a/.t3~ ,,=z (n 2--~ 12  \n-7-1,] 

28 f k=~176 k (l+ik~ 2ilk 
-A~6~ k=0 (1--e-Z~'/k)(l+kZ)4\ 1---~] dk 

= -0.565004Ap~3 - 0.434995 A/~3 

= -0.999999A/~6 
Thus, 

(Psystem) =/&3 -- 0.999999Ap~& 

The exact value of zero should have resulted since for sufficiently small & only 
the term which is linear in 3 has appreciable magnitude. The small deviation of 
the calculated value from zero is a measure of the accuracy possible with the 
numerical methods employed. 

As mentioned earlier, A is used in the same sense as the usual developmental 
parameter of perturbation theory and as such keeps track of the type of perturba- 
tion theory formula used in the calculation. If the electric moment of this static 
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model had been calculated through the first non-vanishing order of A, without 
consideration of /x as well, then a spurious electric moment would have been 
obtained. That  the electric moment essentially vanishes in the present calculation 
means that the first order  (A) wave function for the electron correctly follows 
the proton. This same result would have been obtained automatically by a 
Born-Oppenheimer  calculation but as we shall see, the Born-Oppenheimer  
results are not quite correct when the dynamics of the nuclear motion are 
incorporated. 

5. Parameterization of the model system 

In the static case calculation where there was no quantum mechanical motion of 
the proton, it was possible to obtain an analytical expression for the electric 
moment.  In general, it is not possible to obtain such analytical expressions. To 
proceed numerically we must choose values for the constants m and K. 

It is not unrealistic to think of vibrational amplitude in diatomic molecules as 
about one-fifth of the radius of the first Bohr orbit of the hydrogen atom. In the 
model, setting the average displacement of the proton from the equilibrium 
position to be ~a.u. leads to a value of/3 = (rni~) 1/2 = ~ .  This will be our choice 
for/3. 

For  computational simplicity in later calculations, it is desired to have the 
vibrational energy increment in the model equal to the energy difference between 
two low-energy electronic states. For our calculations we choose this energy 
increment to be that between the n = 3 and n = 4 electronic levels of the hydrogen 
atom. This leads to K =0.303819 a.u. and m =514.285 a.u. The mass obtained 
for the proton is significantly lower than the actual mass which makes it unwise 
to give the various quantitative results which we shall be obtaining too literal an 
interpretation. In fact, as we vary the parameters in this model to increase the 
mass of the "pro ton" ,  the magnitude of the non-Born-Oppenheimer  effect 
diminishes (as expected). 

6. Ground state energy I 

The ground state energy of the model system will now be calculated though the 
lowest non-vanishing order of the developmental parameter/z .  In atomic units, 
the zero-order  wave function for the ground state of the model is: 

e-P ( /3~  1/4 
.tit (0) l "rn, t,m:vtp, O, ~b; 8) (0) e-/3a2/2 0, 6; 

The zero-order  energy for the ground state is: 

e(o  1 + a( K]'/2 
1'0'0;0 = - - 2  2\m]  

(o) Let the bound state functions ~n,~.m;v(P, O, qS; 6) be represented by the ordered 
(o) set of characters (n, l, m; v) and the continuum state functions �9 k.~.m; v (P O, 6;  ~) 
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be represented by the ordered set of characters (k, l, m; v), where it is understood 
that when reference is made to a particular state, n is always expressed as an 
integer and k is always expressed as a non-integer. The first-order (A) energy 
correction to the ground state is: 

E,,0,0;o = ((1, 0, 0; 0)[A 01(f2--f1)+ --f2 (1, 0, 0; 0)) d& 
=-oo 

Evaluating this expression and retaining only the terms of lowest order in t~ yields: 

(1) /~/.2 = 0.0266666 " " �9 /~].~2 a.u. 
El,o.0;o = 3fl 

The zero-order energy of the ground state is -0.4878472 a.u. The first-order 
energy correction evaluated here is quite large in comparison to the zero-order 
ene rgy - in  fact, too large. The problem is that not all terms of order /.~2 have 
been included. There are terms of order A 2/. 2 resulting from the A 2 perturbation 
theory formula which must be included. Once again, it is It and not A which acts 
as the true developmental parameter. 

In the second-order (A) energy formula, zero-order functions which interact with 
(1, 0, 0; 0) over the perturbation to yield energy corrections of order A2t~ 2 are 
those of the type (n, 1, 0; 1) and (k, 1, 0; 1). Evaluating this second-order energy 
contribution and retaining only the /~2]-L2 t e r m s  (these are the terms of lowest 
order in both A and tL) yields: 

E ( 2 )  _-At~z3(2s) { ~ n ( n - l ~  2n 
1,0,0;0 ~ n=2 ( n 2 -  1)(151n2-- 144) \n+-- l /  

+ =0 (l+kZ)(1-e-Z~/k)(144kZ+151)\l--~k. I dk 

= -0.02635229A 2/~ 2 a.u. 

Combining these energy values, the correction to the zero-order ground state 
energy of the model system correct through the first non-vanishing order (the 
second order) of the developmental parameter t~ is: 

E(1) (2~ a,0,0;0 + El,o,o:o = 0.00031438 a.u. 

In this model, a vibrational quantum is 0.024306 a.u., so that this correction to 
the ground state energy represents 2.6% of the zero-point energy of the system - 
no small amount when one is calculating rates of chemical reactions. Further, it 
is our zero-order energy which would be found by the Born-Oppenheimer 
approximation. 

The Hamiltonian for the system is (1). The Born-Oppenheimer wave functions 
which are solutions to the Schr6dinger equation resemble the zero-order wave 
functions in the perturbation theory calculation but are, in fact, quite different. 
The zero-order perturbation theory electronic wave functions are functions of 
p, 0, and 4' and have as their reference point the origin of the coordinate axes. 
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Table 1. Second order vibronic energy corrections 

283 

Vibronic Energy to Order 2 % of vibrational 
state order 0 (a.u.) energy (a.u.) interval 

(1, O, O; O) -0.5000000 0.000314376 1.29% 
(1, O, O; 1) -0.4635417 0.00072250 2.97% 
(2, O, O; O) -0.1128472 0.000061416 0.25% 
(2, 1, O; O) -0.1128472 0.000804779 3.31% 
(2, O, O; 1) -0.0885417 0.000046126 0.19% 
(3, O, O; O) -0.04340278 0.0000291207 0.12% 
(3, 2, O; O) -0.04340278 -0.0003997801 1.64% 

The Born-Oppenheimer electronic wave functions are functions of ~7 and what 
might be called 0' and ~b' which have as their reference point the center of mass 
of the dynamical proton. We want to solve: 

H~0Tota I = ETotall~Total. 

First solve the electronic equation: 

(-�89 0', ~'))~(~, 0', ~') = U(o')O(~, 0', 4)'). 

This yields: 

v(a) =-~n2 +-~a~ 
Then solve the nuclear equation: 

( 1 ~ ) 
2m 082 t- V(a)  4,(6) = ETotal@(O') 

It follows directly that 

] 1 g 1/2 

Though these Born-Oppenheimer functions have a different explicit functional 
dependence than the zero-order perturbation theory functions, they yield the 
zero-order perturbation theory energies. 

The Appendix shows an alternative method for evaluating the ground state energy 
of the model. Energy corrections to other levels may also be calculated [5]. Table 
1 lists these results. 

7. Born-Oppenheimer approximation applied to the calculation of the 
spectrum of the model system 

As a point of reference for further perturbation theory calculations, the allowed 
spectrum of the model system is now investigated via the Born-Oppenheimer 
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approximation. Only the Z component is considered here, bringing in the electric 
moment operator  ~z  = 6 - p cos 0 =- 6 - Z. 

The calculation is performed in two parts. First, the transition moment is deter- 
mined as a function of & 

t.s = (~/tl,0,O(~, 0 ' ,  ~g')[a--Zl{lli, l,m(n, 0', ~)')). 

The quantity ( Z -  6) is the Z coordinate of the electron, rl cos 0'. The transition 
moment will be non-zero only for the states (k, 1, m) and (n, 1, m), n > 1. When 
the integrations over the coordinates of the electron are performed, /*a.i(/}) 
becomes independent of & 

Second, the nuclear contribution to the transition moment is considered: 

~0,~ = ~ 0 ( a ) ~ l , i ( a ) ~ v ( a ) .  
cS 

Since txl,i(o -) is independent of 6, v = 0 due to the orthogonality of the Hermite 
polynomials.  

Thus, at the level of the Born-Oppenheimer  approximation only the (0,0) 
vibronic transitions occur for the system initially in the ground state. This 
corresponds to transitions between Born-Oppenheimer  wave functions having 
indices (1, 0, 0; 0) and (i, 1, 0; 0) (i = n for the bound states and i = k for the 
continuum states). In general, at the level of the Born-Oppenheimer  approxima- 
tion Z-polarized vibronic transitions are symmetry allowed between states of the 
type (i, l, m; v) and (], l+  1, m; v). These are (v, v) type vibronic transitions. 
Any other transitions having non-zero intensity represent deviations from the 
Born-Oppenheimer  approximation results. 

8. First infrared transition 

The first infrared transition for the model is a transition between the states ~1.0,0;0 
and ~1,o.0:a. This is a (0, 1) type vibronic transition which is not found in the 
Born-Oppenheimer  spectrum because the electron follows the proton exactly 
and the electric vector of the light has nothing with which to interact. Using 
perturbation theory, which does not require the electron to follow the proton, 
a transition dipole moment of order /~  1 may be calculated. The existence of a 
non-zero electric dipole moment in a molecule such as deuterium hydride is not 
unknown [6]. For the model, this non-zero value results from the moment due 
to the electron (-0.20047199h/~) not quite cancelling the moment due to the 
proton (1~/5). Thus, 

//'gl,0 = ~ (%Ifl,0,O;lJ(Jts --jO COS o)J~l,O,O;O) 
a d6 

= - i ,  (0.00047199) a.u. 
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9. Vibrational structure in Rydberg series 

Upon electronic excitation, neither the force constant nor the equilibrium inter- 
nuclear distance is altered. This might be called molecular Rydberg behavior of 
a pure kind. Any transition intensities calculated which have non-zero values 
and which are not due to either of these factors might be called vibrational 
structure of a pure Rydberg transition. (Of course, any actual structure found 
in molecular Rydberg series could arise from the fact that excitation of what is 
regarded as a non-bonding electron may in actuality be affecting the bonding. 
In such a situation we must also consider any changes in the force constant and 
the anharmonicity of the potential wells associated with each electronic state. 
However, this situation would not correspond to what we have defined as Rydberg 
behavior of a pure kind.) Within the context of the model system, transitions of 
the type xI/'l,O,O;O( p, O, q~, ~)">XIln,l,rn;l(p, O, ~; 8) other than the first infrared 
transition are sought. 

Considering all possible wave functions, it is found that to the lowest non-vanishing 
order of the developmental parameter (t xl) the only functions which yield 
non-zero values for the transition dipole moment from the state xtrl,0,0;o(p, 0, q5; 8) 
are those of the type ~,,o,o;l(P, 0, q~; 8) and ~n,2,oa(P, 0, 4~; 6). Evaluation of the 
Z component of the moment for the particular transition ~,o.o;o(P, 0, ~b, 8) 
"g2.o.o;a(p,O, 4);8) leads, after a lengthy calculation, to /x(~,o,o;m,t2,0,o;1) = 
-tx(0.0862298) a.u. 

Comparison of the squares of the transition moments shows that this transition 
is about 1/75th as intense as the (1 ,0 ,0;  0)->(2, 1, 0; 0) transition which is 
predicted by the Born-Oppenheimer approximation. As another way of making 
the comparison, the intensity of the transition ~l,0.o;o(P, 0, ~b; 6) 
~2.o,0;1(P, 0, qS; S) is slightly greater than that of the hydrogen atom transition 
(1, 0, 0) ~ (7, 1, 0). Thus, this calculation shows that not only does a (0, 1) type 
transition exist but that it has significant intensity. 

Since the parameters for the model system have been chosen to yield a degeneracy 
in the spectrum (recall that the energy separation between n = 3 and n = 4 is a 

1 
vibrational interval), it is not possible to simply calculate a moment of order tx 
for a (0, 1) type transition from the state ~1,0,0;0 to the degenerate manifold 
using non-degenerate perturbation theory. This degenerate manifold consists of 
the seven zero-order members (3, 0, 0; 1), (3, 1, 0; 1), (3, 2, 0; 1), (4, 0, 0; 0), 
(4, 1, 0; 0), (4, 2, 0; 0), and (4, 3, 0; 0). The intensity of any transition to this 
manifold will be distributed amongst the seven members. For the member 
(4, 1, 0; 0) there exists a zero-order transition dipole moment with respect to the 
ground state. Since any member of the manifold may have significant amounts 
of this zero order member after the degeneracy is resolved, calculation of the 
transition moment to order /.1 is not justified. An important aspect of this 
degeneracy is not the distribution of the intensity but rather the amount and 
pattern of the splitting. 
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10. Accidental degeneracy: Energy splitting of the seven-fold degenerate 
manifold 

The energy level splitting of the seven-fold degenerate manifold is calculated to 
the lowest non-vanishing order of the developmental parameter/x using degener- 
ate perturbation theory. Taking into account all possible interactions and evaluat- 
ing the resulting 7 x 7 secular equation [7], the roots are determined to be: 
E (1) = 0.000000, +/x//31/20.00130207, +/x//31/20.00219537, and 
+/z/B1/20.00818181a.u. For J~=12.5 and a vibrational quantum equal to 
0.02430556, the maximum splitting of the manifold is 19% of a vibrational 
quantum. 

In an actual molecule a seven-fold degeneracy, involving as it does the /-type 
degeneracy of the model system, would not be likely to occur. An accidental 
degeneracy between two vibronic states such as e.g. (4, 0, 0; 0) and (3, 1, 0; 1) 
would be more likely, but the fact that a two-fold degenerate manifold exists 
rather than a seven-fold degenerate manifold does not significantly diminsh the 
magnitude of the expected energy splitting. If the energy splitting between the 
states (4, 0, 0; 0) and (3, 1, 0; 1) is calculated for the model system, again a 
sepration of 19% of a vibrational quanta is found. Unexpected deviations from 
a good fit to the Rydberg formula could, according to this calculation, accidentally 
occur .  

Only states having the magnetic quantum number m equal to zero have been 
considered here. The actual degenerate manifold for the model system has 
twenty-five members which includes states having m = 0, m = +1, and m = +2. If 
these twenty-five members are considered within the context of degenerate 
perturbation theory, the resulting 25 x 25 matrix block-factors into seven distinct 
non-zero and non-interacting matrices, one of which contains only the members 
having m = 0. None of the other blocks contain members which have m = 0. 
Thus, the 7 x 7 m = 0 block of the 25 x 25 matrix may be treated independently 
of the other blocks without introducing error into the calculation of the splitting 
of the seven-fold degenerate manifold. 

11. Vibrationaily induced pre-ionization 

Suppose the model system is excited with light of a frequency corresponding to 
the energy difference between the ground state (1 ,0 ,0 ;0 )  and the state 
(5, 1, 0; 0). The resulting electric dipole transition is clearly a transition between 
two bound states. If the ground state plus one vibrational quantum is thermally 
populated, excitation of the system by light of exactly the same frequency could 
also cause a transition between the states (1, 0, 0; 1) and (5, 1, 0; 1). For the 
model system, the state (5, 1, 0; 1) lies above the ionization limit and thus the 
transition (1, 0, 0; 1 )~  (5, 1, 0; 1) will be followed by a transition into the con- 
tinuum. The width of the spectral line resulting from this possibility is of interest 
and can be calculated to the lowest non-vanishing order of the developmental 
parameter within the framework of the model. 
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A width can be obtained in various ways. Here,  use is made of the fact that 
linewidths appear naturally in electric dipole susceptibility theory. The susceptibil- 
ity X, defined as the dipole expectation value per unit driving field, is the sum of 
so-called positive and negative frequency parts, X+ and X-. In terms of an 
orthonormal basis where N, R, and S are members of the set, N being the true 
ground state of the system, 

X -  "= Id'N, Sg S, R ~ R , N  

and 
+ 

X+ = IJ'N, R g  R,SI~s,N" 

The g's are the usual to Fourier transforms of correlation functions obeying the 
relationships [8], 

oggs, R=--fa (S'R}-{iO(-t) fd (SIHIR(t)}}I,o 

and 

ogg;<s = fda (RIS)-{ iO(-t) fda (RIH'S(t))} l,( 

Physically, to is the frequency of light which interacts with the system. Absence 
of a t following a wavefunction indicates that it is calculated at t = O. For a basis 
in which each of the elements is a simple discrete energy eigenfunction of H with 
the zero of energy taken as the energy of the ground state, the g's have a 
particularly simple form: 

1 1 
gs, s = Y and gR,R+ = ~, o o9o - o9 + iTo o o9o + o9 - iyo" 

(The damping term, 3'0, is gratuitously included). From these relationships, the 
susceptibility becomes 

X = 2 y  ~ 2 COO 
I~N,O o ~ -o92+2io9To 

an expression which is often seen in formulas for the index of refraction of the 
Lorentz-Lorenz  type. It is the quantity 23'0 in the denominator of the susceptibil- 
ity which corresponds to the phenomenological F in the Lorentz-Lorenz  equation. 
In our case the damping will arise naturally because the final state is in the 
continuum. 

If the ground state N is not the true ground state, but rather is the true ground 
state plus one vibrational quantum the previous equations remain uhanged in 
form (provided one avoids the problem of infrared fluorescence), and 3'o may 
be calculated using the general expressions for X and OggS, R. Even so, these 
equations require the wavefunction for N to be the true one. 

As a sufficient approximation in what follows, the zero-order  perturbed function 
for N is used. The basis employed is the set of functions (n, I, m; v) and (k, 1, m ; v). 
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Beginning with the expression for X-, the appropriate gs, a term is sought. The 
Hamiltonian for this study is, except for a shift in the zero of energy, again 
equation (1). To order n ~ the electric dipole moment ~(1.o,0;1).s contains contribu- 
tions from two types of states for Z-polarized transitions. These states are of the 
type (n, 1, 0; 1) and (k, 1, 0; 1). This leads to four possible g-  terms. By the 
triangle condition and the orthogonality of the Laguerre polynomials, only two 
of these terms are non-zero through order/..~ 2(A V = - - h ~  COS O/p2). These terms 
of least order are 

g(n,l,0;1),(n,l,0;1) and g(k,l,0;1),(kA,O:l). 

The quantities 0)(5,1.0;1) and 2y(5~1.o~ are the frequency and the half-width of the 
transition (1, 0, 0; 1)-~ (5, 1, 0; 1), respectively. The particular term which must 
be evaluated is g~-5,1.0;1),(5,1,0;1~ since it is the only term which contains 0) - 0)(5,1,0;1~ 
in a way such that it will lead to 2T(5,1,0;1). Note that o)(1.o.0;1) --- 0. Inserting the 
unit dyadic [q)(q[, where [q) includes any time independent zero-order function 
which interacts with (5, 1, 0; 1) through the Hamiltonian, into the expression for 
g(5,1,o;i),(5,1.o;1), we obtain: 

o)g~5"l'~176 =- l - {  iO(-t) fd~ ((5'l'O;l)lHlq)(q'(5'l'O;l)(t))} o," 

Taking into consideration all interacting Iq)'s, retaining only those terms to the 
lowest order in tz, and disregarding all resulting terms which correspond to a 
shift in the frequency of the spectral line of interest, we are left with the expression: 

g(5,1,0;1),(5,1,0;1)-'~ - - i  -- { ( 0 )  -- 0)(5,1,0;1)) 

[L ]2 
((5, 1,0; 1)[A Vl(k, O, O; 0)) 

0) -- 0)(k.0,0;0) 

t ((5, 1, o; 1)[,~ Vl(k, a, o; o)) 

0) -- 0)(k.2,0;0) 

When w = w(5.1,0;a) this expression has singularities for that value of k which puts 
the continuum state in resonance with the quasi-bound state, i.e., k. What is 
more, the g-  has the form of a partial susceptibility so that the damping constant 
can be read-off directly. Then accounting for the singularities by the residue 
theorem we have, 

i7(5,1,0;1~ = i~- ((5, 1, 0; 1)]A V](k, O, 0; 0)) 
6 
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Evaluation of this equation at/~ = 0.092796 (o)(k.o,o;m = o)(k,2,o;m = o)(5.1,o;1)) yields: 

7(5,1,o;o) ---- A2P "22.728 X 10 .6 a.u. 

Thus, 

F(sa,o;1) = 5.456 x 1 0  - 6  a . u .  = 1.197 cm -1. 

A natural linewidth for a strong electronic transition is about 0.001 cm -1 [9]. As 
expected, F(5,1,0;1) is much broader than this. At elevated temperatures, the 
broadened line will appear in the spectrum of the model system prior to the 
continuum threshold. Of course, exactly superimposed upon this broadened line 
will be the sharp line corresponding to the normal transition ( 1 , 0 , 0 ; 0 ) ~  
(5, 1, 0; 0). 

Acknowledgement. The author wishes to thank Professor William T. Simpson, under whose guidance 
this research was performed, for his considerable assistance in the preparation of this manuscript. 

Appendix. Ground state energy II 

As a further check on the calculation of the ground state energy and as a feasibility 
study concerning the selection of perturbation theory basis sets for calculations 
concerning the model system, the ground state energy of the model system is 
calculated through order / ,2  with the employment of a perturbation theory basis 
set derived from discrete Laguerre functions rather than from Laguerre functions. 

Since the discrete Laguerre functions are not eigenfunctions of H (~ the perturba- 
tion theory must be modified. The modified theory gives results invariant to the 
basis set, and hence it might be called invariant perturbation theory [10]. The 
Rayleigh-Schr6dinger form of this theory will be used here. 

The Hamiltonian operator for the model system is identical to (1). 

Let 01,0,0;0(p, 0, 4); 6) be the true ground state function for the model system. 
We want to solve the eigenvalue equation 

HI qq,o,o;o(p, O, 4~; 6)} = E(,,o,o;o)l~l,O,O;o(p, O, ~ ;6) )  

for the true energy of the ground state, Eo,o,o;m. If an arbitrary basis set [~7o), 
[q71), [q72) . . . .  is chosen such that the first member of the set is not only an 
approximation to ~b(p,o,,;8)l,o,o;o but also is normalized according to the condition 
~d8 (~o101.0,o;0(P, 0, q~ ; 3) = 1, then the true ground state function may be expanded 
in terms of the arbitrary basis. The expression which results for the energy of 
the ground state is (through order/ ,2):  

E(I'~176176 = fd, + [fd  < ~ fd (~Tjl)t VI d~o} ]. 

Here, Mij is the inverse of the square matrix 

(qT,[(E(~ Hm))lqTm); l, m = 1, 2, 3 . . . . .  



290 R.J. Bettega 

Let us choose as our basis set the discrete Laguerre functions (~, l, m; v): 

( ~, l, m; v)=tl~a,l(P)Ol, m( O)dPm( ~))t~(O) ( ~) 

where: 

i~l(p)=23/z[(n+l+l) r] (2P)______~ t e-OlFl(_fi+l+l,21+3,2p). 
' I _ ( h - l - 1 ) ! J  ( 2 / + 2 ) !  

The function (1, 0, 0,; 0) is identically the zero-order perturbation theory function 
and as such is an approximation to the true ground state wave function. 

Evaluating the various parts of E(,.o.o;o) leads to 

fd 1 1 _~+A# 2 
<(1, o, o; O)IHl(f, o, o; o)> = - - + -  

2 2 m  3/3 

f ((f, 0, 0; 0)l)tvl(a, l, 0;1)>= r ,/3{(h+2)!~ '/z 1 
3 \ ~ 1  ( a +  1)(a+2)" 

The diagonal and off-diagonal elements of Mij prior to matrix inversion are [11]: 

e~ <(~i, I, O; l)l(E(~176 i, O; l)> = 

and 

f <(,i, 1,0; 1)[(E(~176 1,0; 1)> 
16 

13 (4~i- 3) 
m 10 

= - r  ( n -  2)[ (ri' + 2)!] 1/2/4r i ' -  3] ti'. 
k ( a + 2 ) ! ~ J  \ - - i -O--- / ; r i>  

In the evaluationof Mq, matrices ranging in size from 2 • 2's up to 120 x 120's 
are inverted. The value for E(,,o.o,o) is only slowly convergent as the size of Mq 
is increased. Consequently, it is necessary to consider E(,.0.o;0) as a function of 
1/N, where N is the number of basis functions included; determine a polynomial 
approximation to this function; and then solve the polynomial for the value of 
E(,,o,o;o) at the limit I /N= O. Following this procedure with a polynomial of 
order 6 gave 

E(,,o,0;o) = -0.4875327 a.u. 

The value calculated here using invariant perturbation theory and the discrete 
Laguerres differs insignificantly from the value obtained in Ground State Energy 
I, namely -0.4875328; however, the method followed in Ground State Energy 
I is the method of choice due to more rapid convergence. 
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